Head trauma

Common causes of head trauma
- Falls
- Assault
- Road traffic collisions (RTCs)

Pathophysiology of head trauma
- Coverings and spaces:
 - The coverings of the brain, or meninges, can be divided into three layers from superficial to deep:
 - Dura mater
 - Arachnoid mater
 - Pia mater
 - The dura is a tough fibrous layer that adheres to the internal surface of the skull; it forms the falx cerebri and tentorium cerebelli, and encloses large venous sinuses
 - Between the skull and the dura lies the extradural space; laceration of the middle meningeal artery can cause an extradural haematoma
 - The arachnoid is thin and transparent; it is not attached to the dura
 - Between the dura and the arachnoid lies the subdural space; laceration of bridging veins that travel from the brain surface to the venous sinuses can cause a subdural haematoma
 - The pia is firmly attached to the surface of the brain
 - Between the arachnoid and the pia lies the subarachnoid space, which is filled with cerebrospinal fluid (CSF) that drains from the ventricles; brain contusions can cause a subarachnoid haemorrhage
- Intracranial pressure (ICP):
 - The skull is a rigid box with incompressible contents
 - ICP depends on the volume of intracranial contents: blood, CSF and brain tissue
 - Normal ICP = 5-12 mmHg
 - Elevated ICP can reduce cerebral perfusion and cause or exacerbate ischaemia
- The Monro-Kellie doctrine:
 - Because the volume of the skull is fixed, any increase in volume of one of its components, such as an expanding extradural haematoma, has to be compensated for by a corresponding reduction in volume of another component
 - Initially CSF and blood are shunted out, providing a degree of buffering and preventing a rise in ICP (compensated state)
 - Once displacement of CSF and blood has been exhausted, a critical point is reached and a sharp rise in ICP occurs (decompensated state)
- Cerebral blood flow (CBF):
 - CBF is proportional to cerebral perfusion pressure (CPP)
 - CPP = mean arterial pressure (MAP) – ICP
 - As ICP rises, MAP rises to maintain CPP; excessively high MAP leads to a reflex bradycardia and this is the basis of Cushing’s reflex
 - CPP is autoregulated at MAP = 50-150 mmHg
 - If MAP <50 mmHg, CPP falls and ischaemia and infarction may occur
 - If MAP >150 mmHg, CPP rises and cerebral oedema may occur
 - CPP also varies with changes in P_{O_2} and P_{CO_2}; hypoxia and hypercapnia lead to cerebral vasodilatation whereas hypocapnia causes cerebral vasoconstriction
CPP should be maintained ≥70-80 mmHg and most clinicians aim for ≥90 mmHg; the critical level for ischaemia is thought to be 30-40 mmHg

- Uncal herniation and false localising signs:
 - An expanding intracranial haematoma may cause a region of the temporal lobe known as the uncus to herniate through the tentorial notch
 - This can cause compression of the ipsilateral oculomotor nerve which runs along the edge of the tentorium
 - Compression of its parasympathetic fibres which lie on the surface of the nerve, cause pupillary dilatation due to unopposed sympathetic activity; this may be accompanied by a down and out gaze
 - In addition, compression of the corticospinal tract which decussates caudally in the medulla causes contralateral hemiparesis
 - Therefore ipsilateral pupillary dilatation and contralateral hemiparesis are the classical signs of uncal herniation from an expanding intracranial haematoma

Worrying clinical features in head trauma
- Headache
- Vomiting
- Confusion
- Seizures
- Reduced Glasgow coma scale (GCS)
- Amnesia
- Focal neurology
- Visual disturbance
- Dilated/’blown’ pupil and contralateral hemiparesis
- Scalp lacerations
- Open or depressed skull fractures
- Signs of basal skull fracture
 - Periorbital ecchymoses (panda eyes)
 - Postauricular ecchymoses (Battle’s sign)
 - CSF otorhinorrhoea
 - Haemotympanum
- Cushing’s triad (very late sign)
 - Hypertension
 - Bradycardia
 - Irregular respirations
- N.B. there is inadequate space within the cranial cavity for haemorrhage to cause shock; if the patient has sustained head trauma and is shocked, look elsewhere for the source of haemorrhage and/or consider alternative causes of shock other than haemorrhage

Assessment of consciousness in head trauma: Glasgow coma score (GCS)
- Adult GCS:
 - Eye opening
 - E4 = spontaneously
 - E3 = to voice
 - E2 = to pain
 - E1 = none
 - Verbal response
 - V5 = conversation
- V4 = confused
- V3 = words
- V2 = sounds
- V1 = none
 - Motor response
 - M6 = obeys commands
 - M5 = localises
 - M4 = withdraws
 - M3 = flexes
 - M2 = extends
 - M1 = none

- Paediatric GCS
 - Eye opening
 - E4 = spontaneously
 - E3 = to voice
 - E2 = to pain
 - E1 = none
 - Verbal response
 - V5 = normal words/sounds
 - V4 = fewer words/sounds, spontaneous cry
 - V3 = cries to pain
 - V2 = moans to pain
 - V1 = none
 - Motor response
 - M6 = obeys commands
 - M5 = localises
 - M4 = withdraws
 - M3 = flexes
 - M2 = extends
 - M1 = none

Imaging in head trauma
- Adult NICE indications for CT scan:
 - GCS <13 initially
 - GCS <15 at 2 hours post-injury
 - Suspected open or depressed skull fracture
 - Signs of basal skull fracture
 - Periorbital ecchymoses (panda eyes)
 - Postauricular ecchymoses (Battle’s sign)
 - CSF otorhinorrhaea
 - Haemotympanum
 - Post-traumatic seizure
 - >1 episode of vomiting
 - Focal neurological deficit
 - Loss of consciousness/amnesia + one of the following
 - Age >65
 - Dangerous mechanism (pedestrian or cyclist struck by a motor vehicle; occupant ejected from motor vehicle; fall from >1 m or five stairs)
 - >30 min retrograde amnesia
 - Although not officially one of the NICE indications, many Emergency Departments consider anticoagulation an absolute indication for CT scan in the context of head trauma
• Paediatric NICE indications for CT head:
 o GCS <14 initially for children >1 year old
 o GCS <15 initially for children <1 year old
 o GCS <15 after 2 hours post-injury
 o Suspected open or depressed skull fracture, or tense fontanelle
 o Signs of basal skull fracture
 ▪ Periorbital ecchymoses (panda eyes)
 ▪ Postauricular ecchymoses (Battle’s sign)
 ▪ CSF otorhinorrhoea
 ▪ Haemotympanum
 o Post-traumatic seizure
 o ≥3 episodes of vomiting
 o Focal neurological deficit
 o Suspicion of non-accidental injury (NAI)
 o Children <1 year old + bruising/swelling/laceration >5 cm
 o >1 of
 ▪ Witnessed loss of consciousness > 5 min
 ▪ Abnormal drowsiness
 ▪ Dangerous mechanism (pedestrian or cyclist struck by a motor vehicle; occupant ejected from motor vehicle; fall from >1 m or five stairs)
 ▪ Amnesia >5 min

Initial management of head trauma: General points
• The severity of head injury can be graded as mild (GCS 13-15), moderate (GCS 9-12) or severe (GCS 3-8)
• Manage patients with moderate or severe head trauma, or a dangerous mechanism of injury, from an ABCDE perspective
• Request a CT head in any patient with one or more NICE indication
• Discuss any clinically significant CT head findings with neurosurgery
• Have a low threshold for requesting a CT head in elderly patients with dementia and/or delirium who have fallen and sustained a head injury: It is unlikely they will be able to provide a reliable history or comply with examination and if the fall was unwitnessed there will be no collateral history about the event either
• Consider whether imaging is required to exclude a cervical spine injury; NICE guidelines advise that if patients require a CT head and imaging is required to exclude a cervical spine injury, then CT neck is the recommended imaging modality
• Consider what led to the head injury; if it was a fall, what was the cause and are there any other injuries?

Initial management of head trauma: Prevention of secondary brain injury
• Primary brain injury occurs during the initial trauma; secondary brain injury occurs after the initial insult and is potentially preventable or treatable
• Intubate patients with a low GCS in order to maintain and protect their airway
• Avoid hypoxia and maintain $P_{O_2} >13$ kPa
• Aim for P_{CO_2} in normal range (4.5-5 kPa) – therapeutic hypocapnoea is no longer used
• Intubate and ventilate as required to achieve these aims
• Tape endotracheal tube in place as opposed to tying them so as not to obstruct venous drainage
• Avoid excessive intra-thoracic pressures
• Avoid hypotension and maintain MAP ≥90 mmHg using vasopressors as necessary
• Avoid hypoglycaemia and replace glucose as necessary
• Treat seizures; paralyse if necessary
• Nurse with 30° head-up tilt, neck inline to improve venous drainage and reduce ICP without compromising CPP
• Avoid cervical collars if possible
• Consider mannitol 20% 500 ml IV to reduce ICP
• Ensure adequate analgesia to avoid rises in ICP
• Aim for normothermia

Initial management of head trauma: Wound management
• The scalp is highly vascular and wounds may need compression to achieve haemostasis
• Explore and clean any wounds; remove any foreign bodies identified with the naked eye and request a soft tissue radiograph if glass was involved and/or further foreign bodies are suspected
• Most scalp lacerations can be closed with glue and/or steristrips but deeper wounds will require sutures
• Consider the need for tetanus and antibiotic prophylaxis

Further management of head trauma
• Admission criteria:
 o CT head with clinically significant abnormalities
 o GCS not returned to normal
 o Awaiting CT head
 o Continued clinical concern e.g. vomiting
 o Other ongoing concern e.g. intoxication
• Recommended frequency of neurological observations (neuro obs):
 o Half-hourly until GCS = 15
 o Then half-hourly for 2 hours
 o Then hourly for 4 hours
 o Then 2-hourly
• Discharge advice:
 o Written and verbal advice should be given to all patients discharged following a head injury
 o Advise patients to return if any of the following develop
 ▪ Unconsciousness
 ▪ Confusion
 ▪ Inappropriate drowsiness
 ▪ Problems understanding or speaking
 ▪ Problems with balance
 ▪ Weakness
 ▪ Blurred vision
 ▪ Painful headaches that won’t go away
 ▪ Vomiting
 ▪ Seizures
 ▪ Clear straw-coloured fluid coming from their nose and/or ears
 ▪ Bleeding from one/both ears
Common questions concerning head trauma

- List three causes of head trauma
 - Falls
 - Assault
 - RTCs

- List the three meninges from superficial to deep
 - Dura mater
 - Arachnoid mater
 - Pia mater

- List the three potential spaces from superficial to deep
 - Extradural space
 - Subdural space
 - Subarachnoid space

- Summarise the Monroe-Kellie doctrine
 - Because the volume of the skull is fixed, any increase in volume of one of its components, such as an expanding extradural haematoma, has to be compensated for by a corresponding reduction in volume of another component

- Give an equation for CPP
 - CPP = MAP – ICP

- Between what pressures is CPP is autoregulated?
 - CPP is autoregulated at MAP = 50-150 mmHg

- List the three features of Cushing’s triad and explain its mechanism
 - Hypertension
 - Bradycardia
 - Irregular respirations
 - As ICP rises, MAP rises to maintain CPP; excessive MAP may cause a reflex bradycardia

- A 79 year old lady presents with a reduced level of consciousness after sustaining a head injury during a fall; she does not open her eyes but moans and flexes her limbs when given a jaw thrust; give a breakdown of her GCS including the total score
 - GCS = E1 V2 M3 = 6

- On opening her eyes, you see that one of her pupils is fixed and dilated; what is the likely mechanism of this?
 - Third nerve palsy from uncal herniation secondary to an expanding intracranial haematoma

- Give six of the NICE indications for CT head; any six of
 - GCS <13 initially
 - GCS <15 at 2 hours post-injury
 - Suspected open or depressed skull fracture
 - Signs of basal skull fracture
 - Periorbital ecchymoses (panda eyes)
 - Postauricular ecchymoses (Battle’s sign)
 - CSF otorhinorrhoa
 - Haemotympanum
 - Post-traumatic seizure
 - >1 episode of vomiting
 - Focal neurological deficit
 - Loss of consciousness/amnesia + one of the following
 - Age >65
 - Dangerous mechanism (pedestrian or cyclist struck by a motor vehicle; occupant ejected from motor vehicle; fall from >1 m or five stairs)
 - >30 min retrograde amnesia

- Explain the difference between primary and secondary brain injury
Primary brain injury occurs during the initial trauma; secondary brain injury occurs after the initial insult and is potentially preventable or treatable.